Core Focus

- Working with factors and multiples, and identifying prime and composite numbers
- Using the associative property to multiply and introducing the double-and-halve strategy for multiplication
- Reviewing fraction concepts and comparing fractions using a number line model

Multiplication and Division: Factors and Multiples

- Numbers can be taken apart by using multiplication or division:
- 30 is a multiple that can be broken into 5×6, or $5 \times 2 \times 3$
- $5,6,2$, and 3 are factors of 30 .
- By listing pairs of factors in order, all the factors of a multiple can be listed systematically. E.g. for 30 : $1 \times 30,2 \times 15,3 \times 10$, and 5×6. All the factors of 30 are $1,2,3,5,6,10,15$, and 30 .

To find the number of factors for a multiple, students build rectangles using a number of small squares. In the example above, three different rectangles (or arrays) have each been built from 20 small squares.

- If the number has many factors, it is called composite. If the only factors of a number are itself and I, it is prime.
- When one factor is doubled and the other is halved, the quantity of the product is the same. An array model illustrates why this works. for Multiplication

How could you figure out the number of squares in this array?

Imagine the array is cut in half and the new array below is made
 with the two pieces.

What is different about the arrays?
Has the number of squares changed?
Is it easier to calculate the total number of squares for the new array? Why?

Write a number sentence to describe each array.

9
Students use a rectangular array to show how one factor can be doubled and the other can be halved to figure out the total.

Ideas for Home

- Ask your child to multiply three one-digit numbers, e.g. $4 \times 5 \times 8$, and then describe the mental strategy used (was it 20×8 or 4×40 or 32×5 ?). Ask which was the easiest.
- Practice the doubling and halving strategy with larger factors such as 18×5. Half of 18 is 9 and double 5 is 10 , so $18 \times 5=9 \times 10$, which is easier to multiply mentally (90).
Note: one of the factors must be even.

Glossary

- Associative property of

 multiplication allows three numbers to be multiplied in any order: e.g. $2 \times 3 \times 4$ can be $(2 \times 3) \times 4=6 \times 4=24$ or $2 \times(3 \times 4)=2 \times 12=24$ or $(2 \times 4) \times 3=8 \times 3$.- A prime has only one set of factors, so only one rectangular array can be built. 7 is prime because there is only one way to configure 7 tiles into a rectangle ($7 \times \mathrm{I}$).
\square
- Numbers can be broken down to make mental multiplication easier. E.g. order and grouping do not matter when we are multiplying more than two numbers together.

In this lesson, students consider the best order to multiply three one-digit numbers.

Fractions

- In Grade 3, students used area and length models to learn about equivalent fractions.
- In this module, length and number line models are used to compare fractions.
- Length models are used to compare common fractions by first considering the size of the unit fractions and how many unit fractions it takes to make one whole.

\|										
$\frac{1}{2}$					2					
$\frac{1}{5}$		$\frac{1}{5}$					$\frac{1}{5}$!		
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$		$\frac{1}{8}$	$\frac{1}{8}$	-	$\frac{1}{8}$	$\frac{1}{8}$		$\overline{8}$
$\frac{1}{12} \frac{1}{12}$	$\frac{1}{12}$	12								

- Number lines are used to compare and then order common fractions.

Glossary

- A composite has more than one set of factors and more than one array can be built. E.g. 6 is composite because there are 2 possibilities $(6 \times 1$ and 2×3).

- A unit fraction is a proper fraction that has I as the numerator. E.g. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$, $\frac{1}{5}$, etc. All fractions are composed of unit fractions: e.g. $\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{3}{5}$.
- While $\frac{10}{3}$ is called an improper fraction, this type of fraction is acceptable to write and use in mathematics.

Ideas for Home

- When cooking, use measuring cups and spoons to review equivalency. E.g. a $\frac{1}{2}$ cup is equivalent to $\frac{2}{4}$ cup, etc.
- Use a tape measure to compare lengths. E.g. "Is $\frac{1}{3}$ of a yard longer or shorter than $\frac{1}{4}$ of a yard?"

